



# Course Specification (Bachelor)

**Course Title: Climate, Environment and Architecture** 

Course Code: ARCH 130

**Program: Architecture** 

**Department: Architecture** 

**College: Architecture and Planning** 

**Institution: Qassim University** 



#### 1. Course Identification

#### **Course general Description:**

This course aims to enable students to understand the direct relationship between the climate (macro and micro) and human comfort. A brief introduction to climatology and weather deviations. Explaining the techniques and tools of analyzing and controlling the macro and micro climatic elements affecting the building design and materials selections.

#### **Course Main Objective(s):**

By the end of this course the students will be able to:

- To develop student's understanding of the relation between micro and macro climate and human comfort
- To promote student's knowledge about sun path, solar angles, shadow angles, different types shading masks and devices, and principles of natural daylighting design.
- To promote student's knowledge about the building thermal behavior and main building materials determinants (U-value, R-value, SHGC, VT, etc.)
- To increase student's awareness about tools and techniques of passive design to achieve indoor thermal comfort and minimize dependencies of traditional energy sources as part of sustainability objectives.
- To develop student's skills in analyzing climatic elements using Mahoney tables, using and extracting information from solar charts, shadow angle protractor, ET chart, Givoni's chart, Olgey's chart, and psychometric chart.

## 2. Course Learning Outcomes (CLOs)

| Code | Course Learning Outcomes                                                                                           | Code of CLOs<br>aligned with<br>program |
|------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 1.0  | Knowledge and understanding                                                                                        |                                         |
| 1.1  | Define appropriate passive treatments techniques for different climate zones.                                      | K-1                                     |
| 1.2  | Demonstrate appropriate shading devises based on window's orientation and climate characteristics.                 | S-2                                     |
| 1.3  |                                                                                                                    |                                         |
| 2.0  | Skills                                                                                                             |                                         |
| 2.1  | Analyze climatic elements, characteristics and identify specific design solutions for architectural project's site | S-2                                     |
| 2.2  |                                                                                                                    |                                         |



| Code | Course Learning Outcomes             | Code of CLOs<br>aligned with<br>program |
|------|--------------------------------------|-----------------------------------------|
| 3.0  | Values, autonomy, and responsibility |                                         |
| 3.1  |                                      |                                         |

### 3. Students Assessment Activities

| No | Assessment Activities *        |  |
|----|--------------------------------|--|
| 1. | Quizzes, Practical assignments |  |
| 2. | Mid-term exam                  |  |
| 3. | Project (Site Analysis)        |  |
| 4. | Final Exam                     |  |

# 4. Learning Resources and Facilities

| Essential References     | <ul> <li>Norbert Lechne (2014). Heating, Cooling, Lighting-Sustainable Methods for Architects - Fourth Edition. WILEY</li> <li>Steven V Szokolay. (2008). Introduction to Architectural Science – The Basics of Sustainable Architecture - Second Edition. Elsevier</li> <li>Mark DeKAY and G, Z, Brown. (2014). Sun, Wind, And Light: Architectural Design Strategies- Third Edition. WILEY</li> <li>Victor Olgyay. (2015). Design with Climate: Bioclimatic Approach to Architectural Regionalism. Princeton University Press; Expanded edition.</li> </ul> |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Supportive References    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Electronic Materials     | <ul> <li>http://www.energy-design-tools.aud.ucla.edu/climate-consultant/request-climate-consultant.php</li> <li>https://energyplus.net/weather</li> <li>http://andrewmarsh.com/software/</li> </ul>                                                                                                                                                                                                                                                                                                                                                           |  |
| Other Learning Materials | - The students should read other scientific references and course related topics form periodical journals and relevant websites.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

